
ESIL SIDE-CHANNEL SIMULATION

 ████████
 ███▄███████
 ███████████
 ███████████
 ██████
 █████████ ▗▄ ▝▜ ▝ ▗ ▐ ▄▄ ▄▄ ▄▄ ▄▄ ▄▄
 █ ███████ ▗▘ ▘ ▐ ▗▄ ▗▟▄ ▄▖ ▐▗▖ ▄▖ ▗▄▄ ▗▘▝▖ ▖▄ ▝ ▝▌▗▘▝▖▗▘▝▖▗▘▝▖
 ██ ████████████ ▐ ▗▖ ▐ ▐ ▐ ▐▘▝ ▐▘▐ ▐▘▜ ▞ ▐ ▖▌ ▛ ▘ ▗▄▘▐ ▖▌▐ ▖▌▐ ▖▌
 ███ ██████████ █ ▐ ▌ ▐ ▐ ▐ ▐ ▐ ▐ ▐ ▐ ▞ ▐ ▌ ▌ ▝▌▐ ▌▐ ▌▐ ▌
 ███████████████ ▚▄▘ ▝▄ ▗▟▄ ▝▄ ▝▙▞ ▐ ▐ ▝▙▛ ▐▄▄ ▙▟ ▌ ▝▄▟▘ ▙▟ ▙▟ ▙▟
 ███████████████
 █████████████
 ███████████
 ████████
 ███ ██
 ██ █
 █ █
 ██ ██

2

> iq

● Nicolas

● R&D dept. @ Kudelski
Security

● Embedded systems security
research
– Reverse engineering

● Karim & Sylvain

● Security Evaluation Lab @
Kudelski IoT

● Hardware attacks
– Glitch / EM

– Lasers !

3

Introduction

● Fault attack is an interesting attack path for IoT

● For low cost devices, there is only software protection

● Set-up cost have decreased a lot recently

4

FAULT ATTACKS

5

Fault attacks

● Disturb a device execution from its normal behavior

● Various hardware technique allows that

● Some software or micro-architectural methods as well:
Rowhammer, LVI, V0LTpwn, ...

6

Fault attacks

7

Fault attacks

8

Fault attacks

9

Fault effects

● Effects on the CPU can vary in many ways
– Skip instruction(s)

– Corrupt register/memory reads/writes

● Literally depends on the silicon, the type of fault, ...

10

Simulate fault effects

● Glitching is a first step but finding practical exploits is another

● Not always access to source code

● Not always easy to emulate a firmware

● Hardware glitch campaigns may be very long

● Useful for code audit to catch some vulnerabilities

11

Problems ?

12

Existing tools

● Lazart (VERIMAG laboratory, University of Grenoble)
– Based on LLVM

– Needs source :(

● FiSim (Riscure)
– Based on Unicorn & Capstone

– Only works on supported architectures :(

– Not publicly available :(

13

ESIL FOR FAULT SIMULATION

14

Our approach

● Use R2’s ESIL to simulate parts of the firmware
– On raw firmware, can be used during the reversing phase with a single tool

● Instrument the VM using r2pipe and Python
– Setup stack/registers

– Run the simulation

– Record the results

15

GLitchoz0r 3k

● Python module

● Easy setup
– Set simulation start/end address

– Set initial registers

– Set success conditions

– …

– Results !

16

Fault models and conditions

● All fault models are
implemented as a function

● Fault models are added to the
simulation

● One fault model per simulation

17

RESULTS

18

Naive check

19

Naive check

● Skipping the for loop makes
the password check return a
correct value

20

Stronger check

21

Stronger check

● If statement is a branch
– Branches follow each other

22

Stronger stronger check

23

Fault attacks on AES

● Well known and documented fault attack
– Works great on embedded devices

● With at least 4 faulted ciphertexts, it is possible to recover the AES
key

● If we can generate good faulted ciphertexts and recover the key,
the glitch simulation is working

24

The famous Balda test

● “If it simulates AES , ESIL is close enough”
– Good example (memory reads/writes, arithmetic operations, loops, …)

● Problem : ESIL works fine on x86, but does not work on ARM
nor RISC-V
– Incorrect results, or infinite loops

25

ESIL / ASM DIFFING

26

Goals

● Validate ESIL implementation against a real device

● Improve ESIL support for embedded architectures (e.g. ARM)

● Automate comparison process for:
– Few instructions / functions

– Full binary execution

● Architecture agnostic

27

Diffosaurus

● Instrumentation of Radare2 with Python (r2pipe)

● Simultaneously open two pipes
– DEBUG

● QEMU

● Device [JTAG / SWD]

– ESIL
● ESIL VM setup

● ESIL synchronization with DEBUG (registers & memory space)

● Step and compare registers until discrepancy happens … or not :)

28

Use case

● Compiled binary
– Specific function within firmware

● Unit tests
– Relocate current map to executable memory (e.g. SRAM)

● "omb. 0x20000000”

– Write assembly
● "wa MOV r1,#0x0;SUBS r1,#1;SUBS r1,#1;"@ addr

– Configure “instruction pointer”

– Execute

Peripheral

SRAM

Code

External RAM

0x3FFFFFFF
0x20000000
0x1FFFFFFF
0x00000000

0x5FFFFFFF
0x40000000

0x9FFFFFFF
0x60000000

Test

29

Features

● Display previous and current instruction

● Highlight differences between registers

● Synchronize registers between DEBUG and ESIL pipes

● Interact with DEBUG / ESIL pipes

30

Demo

31

Demo

32

ESIL improvements

● 1 PR in progress
– Fix ARM IT Block (#17509)

● 7 PRs merged
– ARM fixes (#17347 / #17058)

– RISC-V fixes (#17115 / #17078 / #17005 / #16996 / #16962)

● Multiple issues fixed

● AES now works on ARM32/Thumb/RISC-V

33

FINAL TESTS AND CONCLUSION

34

Final test

● Apply the fault simulator on AES

● If the faults allow to recover the AES key, it is a win

35

Final test results

36

Future work

● Implement multiple faults during the same simulation

● Add fault models
– Single bit flip on instruction to simulate laser-induced faults

● Enhance ESIL for other architectures

37

Conclusion

● Glitch simulation reproduced on real hardware

● Ability to identify potential fault injection points in firmware

● Radare2 allows to quickly* add a new architecture with no
change in the simulation code
– * If ESIL works correctly

38

BONUS : INSTRUCTION TRACING USING ESIL

39

Side channel tracing

● Since we can simulate a full AES, we can use ESIL information to
retrieve memory reads / writes
– We can generate / plot a trace of memory accesses

● We can apply a “CPA” attack to recover the key
– Tools already exist https://github.com/SideChannelMarvels/Daredevil

40

Side channel tracing

