Using EMC testing equipment as a new side channel acquisition technique

Hardwear.io NL 2022

Who are those guys ?

Benjamin VERNOUX

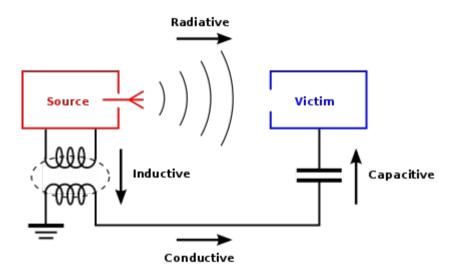
Embedded Hardware / Firmware / Host tools SDR: AirSpy R0-R2/Mini HydraBus v1 / HydraNFC v1&v2... HydraUSB3 v1

Nicolas OBERLI

Embedded security by day

- Security evaluations
- Side channel, fault injection, ...

Hardware hacking by night


- Same, but cheaper

EMC?

- ElectroMagnetic Compatibility
 - Wikipedia : "ability of electrical equipment and systems to function acceptably in their electromagnetic environment"
 - Does the device under test (DUT) behave normally in case of electromagnetic interference (EMI) ?
 - \circ $\,$ Does the DUT generate EMI ?
- Mandatory for commercial products

Types of EMI coupling

- **Radiative Coupling** When an unwanted signal is transferred from source equipment to victim equipment by radiation through space.
- Inductive Coupling The source and the victim are coupled by a magnetic field.
- Conducted Coupling When there is a conduction route along which the signals can travel. This may be along power cables or other inter-connection wires. The conduction may be in one of two modes:
- **Capacitive Coupling** The level of disturbance depends on the voltage variations (dv/dt) and the value of the coupling capacitance between the disturber and the victim.

4

Types of EMI coupling "Radiative"

Radiated emissions testing involves measuring the electromagnetic field strength of the emissions that are unintentionally generated by the DUT

Near Field Probes

Tekbox TBPS01-TBWA2 EMC near field probe set

Radiated Emissions measurements from <1MHz up to 6GHz with preamplifier (20dB or 40dB)

Can be used with an Oscilloscope or a Spectrum Analyzer

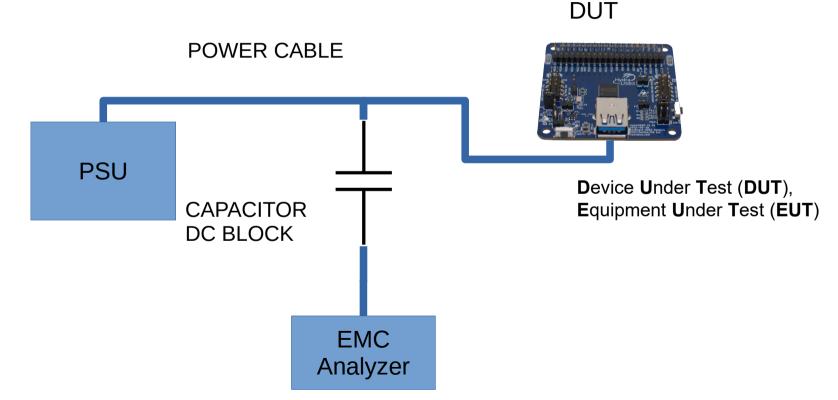
Types of EMI coupling "Radiative"

Ultra Wide Band Antenna / Log-Periodic Antenna

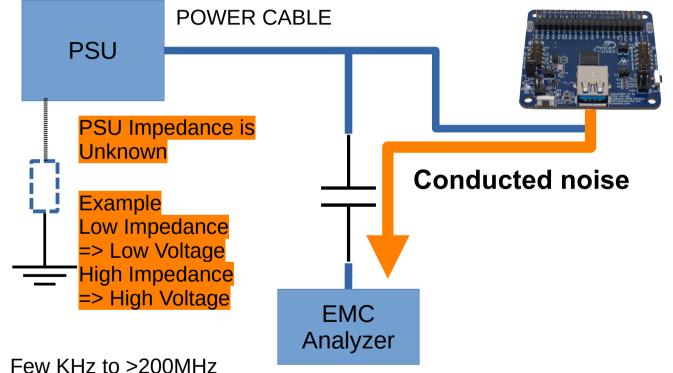
375MHz - 6GHz RFSPACE TSA400 (Gain >4dBi) 380MHz - 6GHz DEEPACE KC-R100B (Gain >5dBi)

Our assumption (and why we are here today)

- Radiated and induced EM emissions can already be used to perform SCA
- Can conducted EM signals do the same ?

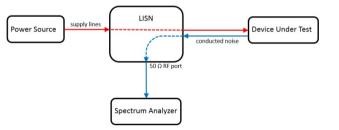

Couldn't find any reference in academic papers
Usually a bad sign

• Only one way to find out: testing !

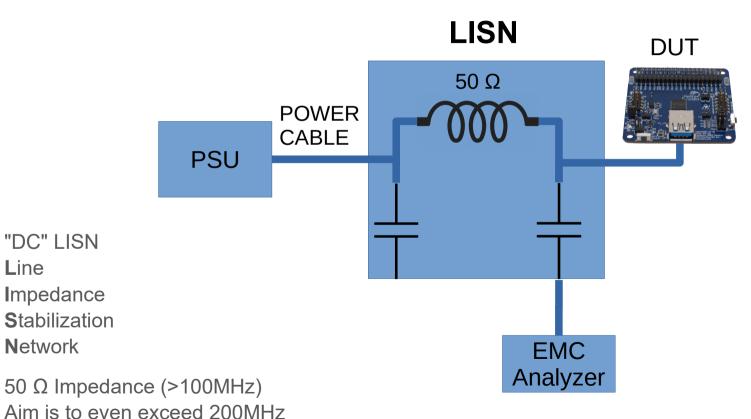


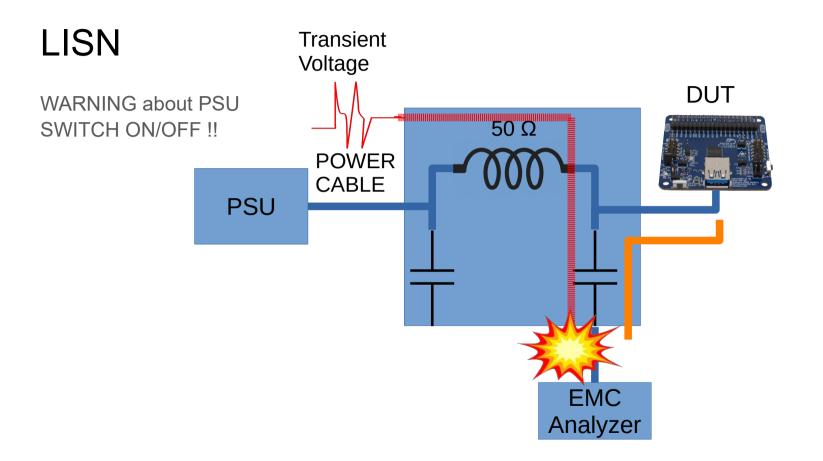
EMI coupling "Conductive"

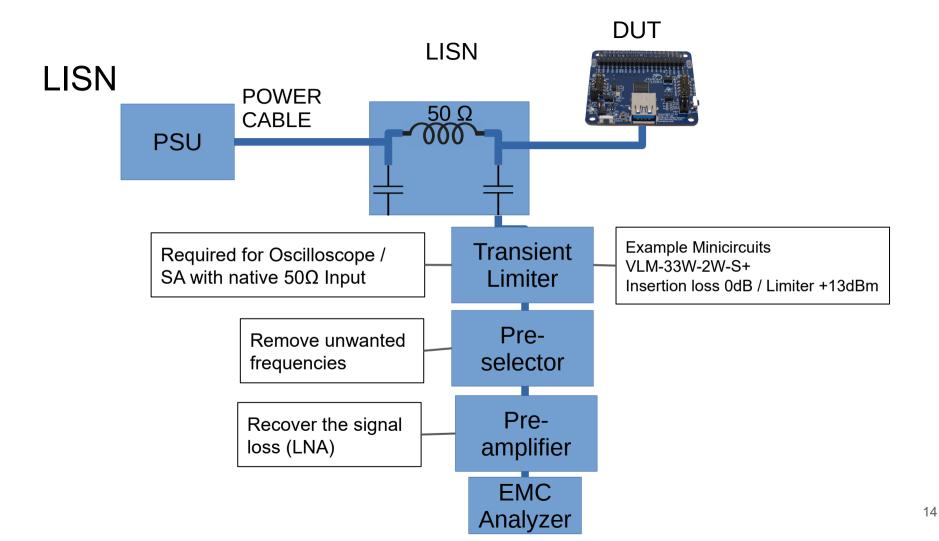
Types of EMI coupling "Conductive"


Types of EMI coupling "Conductive" DUT

LISN


- Line Impedance Stabilization Network
 - Low pass filter (cutoff freq 250Hz in our design) typically placed between a power source and the supply terminals of a device under test (DUT).
- Used in EMC testing
 - \circ Provides a well-defined RF-impedance to the DUT (50 Ω)
 - To have lowest loss / maximum power transfer in RF (captured with Scope/SA)
 - Filters power supply noise


• Provides measurement port for RF noise

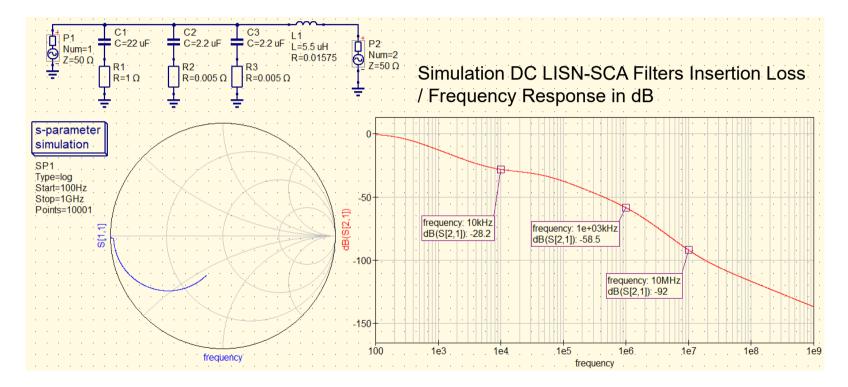


Line

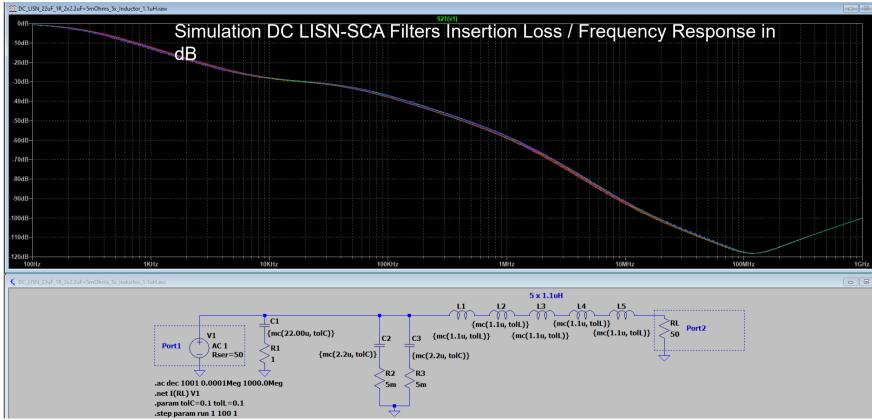
DIY LISN

- Commercial LISNs are quite costly (400+€)
 - Well known DC 5µH LISN are TekBox DC LISN 5uH (cost 249USD/unit) => Dual DC LISN requires 2x so > 500 USD

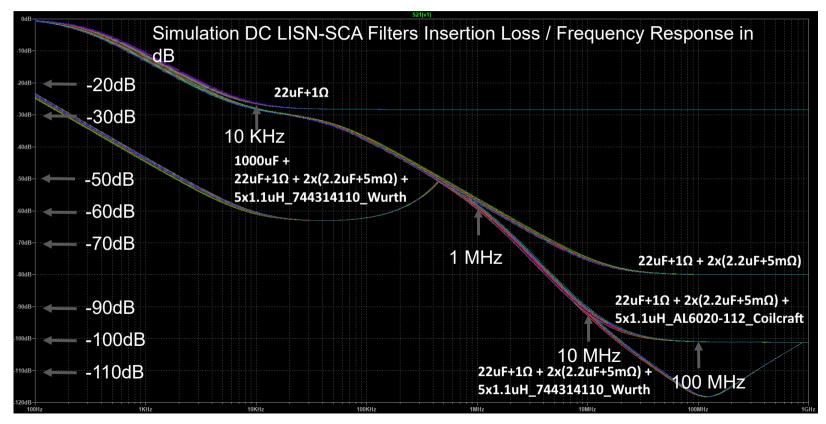
- Let's build our own !
 - Fully Open Hardware Dual DC LISN available on Github

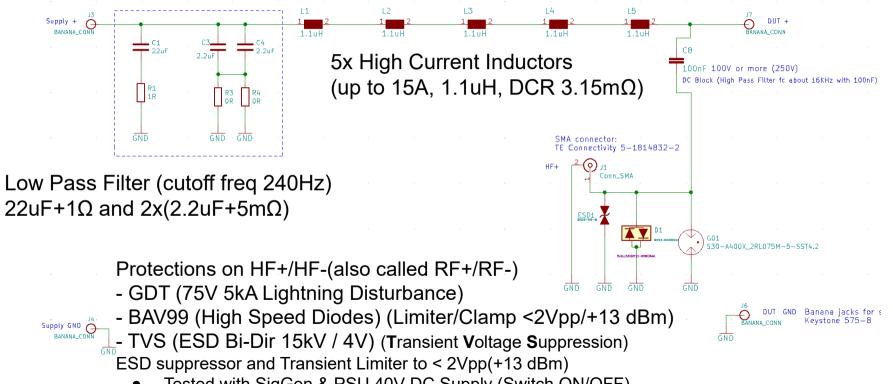


LISN for SCA

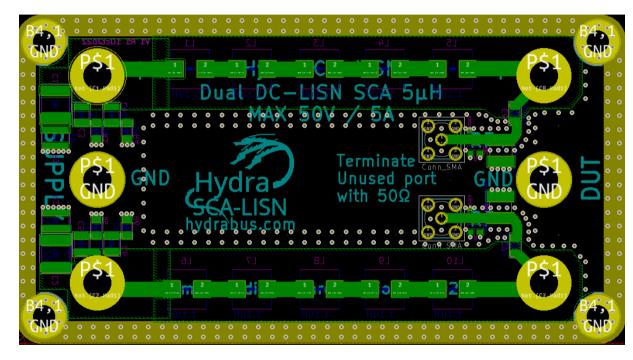

- LISNs usually have attenuators to avoid damaging measurement tools
 - Might dampen the signal
 - \circ Standard LISN output is 50 Ω matched
 - Cannot use oscilloscope 50Ω termination
 - Requires a Transient Limiter to avoid potential permanent damage to the Oscilloscope Input
 - Must use an 50Ω Impedance Adapter to connect to oscilloscope 1MΩ Input

- Solution: remove the attenuator and add input protection
 - We'll be using an oscilloscope anyways


Conception of a DC-LISN SCA Simulation LP Filters+5µH Inductors (QucsStudio 4.3.1)


Conception of a DC-LISN SCA Simulation LP Filters+5µH Inductors (LTSpice)

Conception of a DC-LISN SCA Simulation LP Filters+5µH Inductors (LTSpice)

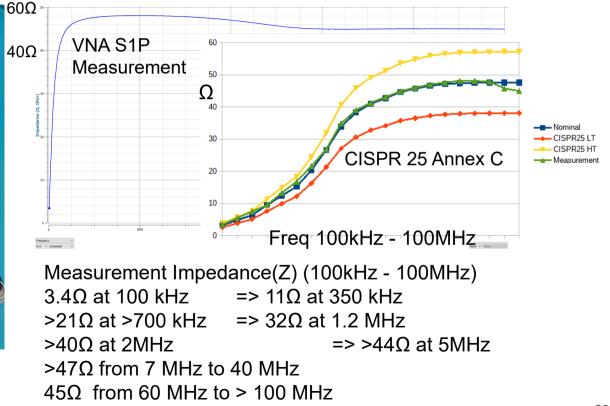


Conception of a DC-LISN SCA Schematic (KiCad 6)

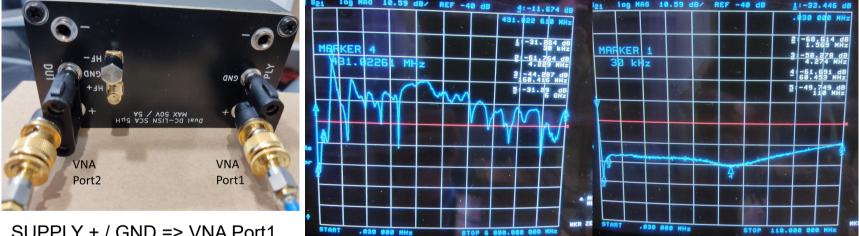
• Tested with SigGen & PSU 40V DC Supply (Switch ON/OFF)...

Conception of a DC-LISN SCA PCB (KiCad 6)

PCB 2 Layers 1.6mm(Core 1.5mm) FR4-STD (Er 4.6) Saturn PCB Toolkit V8.21 Conductor Impedance => Impedance 50 Ohms Computation for Inductances traces ("L1-L5" / "L6-L10") Microstrip Conductor Width: 2.8mm Conductor Height: 1.5mm Z0 computed: 50.1 Ohms L0 computed: 3.0880 nH/cm C0 computed: 1.2321 pF/cm Computation for RF traces ("RF+"<=>"DUT+" / "RF-"<=>"DUT-") **Coplanar Wave** Conductor Width: 1.88mm Conductor Height: 1.5mm Conductor Gap: 0.47mm Z0 computed: 50.12 Ohms


Conception of a DC-LISN SCA Final Board

HydraSCA-LISN have Input protections/Limiter to protect Oscilloscope (or Spectrum Analyzer) Input even with native 50Ω
About +10 dBm Limiter


DC-LISN SCA Measurements with VNA (Impedance)

DC-LISN SCA Measurements with VNA (Filters/Isolation)

Measurement of Isolation (Filter) between SUPPLY +/GND & DUT +/GND

SUPPLY + / GND => VNA Port1 DUT + / GND => VNA Port2

Measurement Filters/Isolation

- 1 => -33 dB at 30 KHz 2 => -68 dB at 1.5 MHz
- 3 => -58 dB at 4 MHz
- 5 - 56 UB at 4 MHZ
- 4 => -61 dB at 60 MHz
- 5 => -49 dB at 110 MHz

DC-LISN SCA Measurements with VNA (Insertion Loss)

Measurement of InsertionLoss/Bandwidth & cutoff Frequency between DUT +/GND & HF+

HF+ => VNA Port1 DUT + / GND => VNA Port2 Bandwidth measurement > 430MHz (-3dB) DC Block + Protections (HF+) Low Pass Filter cutoff freq > 400 KHz (Simulation 16KHz 100nF Capacitor)

DC-LISN SCA Measurements Limiter/Clamp

3.000 000	000 00 GHz	-135.0	O dBm	LF Out Off On LF Out Amplitude 5.000 Vp	1
Ampl: 5.000 Vp Nodulation Status Infor		Ir	icr: 100.0mV	LF Out Source (FuncGen)	
All 1 Off 0.12 All 2 Off 0.12 All 4B Off 0.55 FM 1 Off 1.0		Rate 400.0Hz 400.0Hz 400.0Hz	llaveform Sine Sine Sine	LF Out Waveform (Triangle)	
QM 1 Off 0.0 QM 2 Off 0.0 LFOut On 5.0 Pulse Off 40.0	000kHz Internal 00rad Internal 00rad Internal 00Vp FuncGen 0usec Internal	400.0Hz 400.0Hz 400.0Hz 400.0Hz 10.0000kHz 80.0usec	Sine Sine Sine Triangle Pulse	LF Out Freq 10.0000 kHz LF Out Period (N/A)	
Burst Off I/Q Off value clipped to upper	Ext1 DC Ext I/Q Limit.				
Preset	Local	00			

LISN SCA

Signal Input 10Vpp 10kHz Triangle RF Protection clamp signal to <2Vpp (<1.8Vpp max about +10dBm) to protect sensitive Oscilloscope Input (50Ω native) or Spectrum Analyzer Input

Measurement setup

Measurement setup

- Standardized by IEC : CISPR 25
 - Not free :(
 - Old version can be found using google dorks

Download	CD				
English/	French	<u>CHF</u> 380			
	Add	to cart			

- Gives lots of information about measurement setup
- Tekbox documentation provides the same information we need

Measurement setup - cont.

• Stay as close as a standard EMC measurement setup

- Earthing
- Ground plane
- Cable lengths
- Support

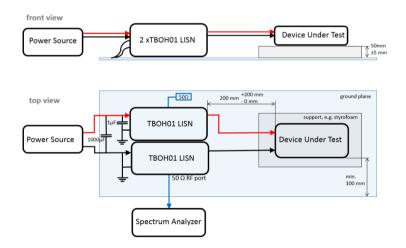
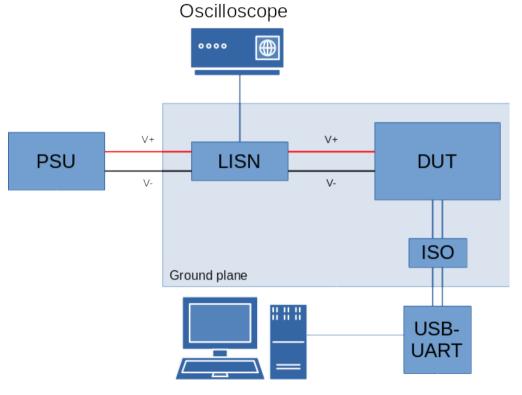
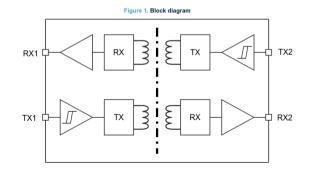


Figure 10: conducted emission measurement, voltage method, DUT with power return line remotely grounded

Test setup

Oscilloscope STM32 "bluepill" 0000 Decoupling capacitors removed 0 LISN on both power rails (+3.3V/GND) Rigol MSO5000 oscilloscope V+V+ LISN 350MHz / 4GSPS **PSU** DUT 0 V-V-Ground plane connected to earth Ground plane LISN <-> DUT cables max. 20cm # # # USB-UART


Objection !


- Need UART to communicate with target
- Means we will bring in conducted EMI from PC to DUT

• More noise means lesser correlation on traces

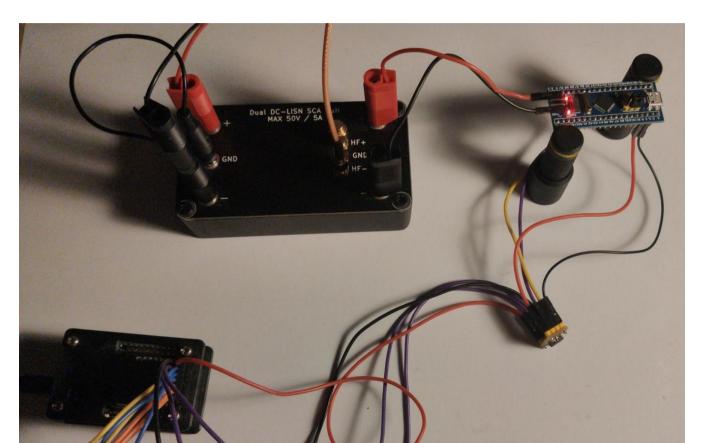
Communication isolation

- Easy solution : optocouplers
 - Salvaged from old PSU
 - Works @9600bps
- Better solution : digital isolator
 - Faster communication is possible

Direct connection

DICOI		20.0.0	4GSa/s	~~~~~~			76.40.0	Т 📑	The Address of the Address
RIGOL		20.0us	4GSa/s 800kpts	Measure	STOP/RUN	D	76.48us		1 144mV N
	•								
3									
- - Std.Dev3	VRMS3	Vpp 3	1						
2.0882mV	2.0833mV	36.409mV]						
1 - 10	^{0mV} 2	100mV 0.00V	3 5.00r	nV .00V 4	100mV 0.00V		2 3 4 5 6 7 011 12131415	GII	∲ LXI ∜ × 00:53

Isolator



Isolator + ground plane

RI (GOL ST	OP H	20.0us	4GSa/s 800kpts	Measure	STOP/RU		00s	T	1 0.00V A
-										
										- - -
-										- The state of the state
								oxouthum		
										nakak tarihi sanati ya UKA
- - -										- - -
-										-
	Std.Dev 3 696.17uV	VRMS3 667.03uV	Vpp3 17.246mV							
	1 100m	V 00V 2		3 5.0	0mV 0.00V		L 0 1 2 3 8 9 1011		GI ~	∲ LXI ∢ × 23:22

36

Final setup

Software side

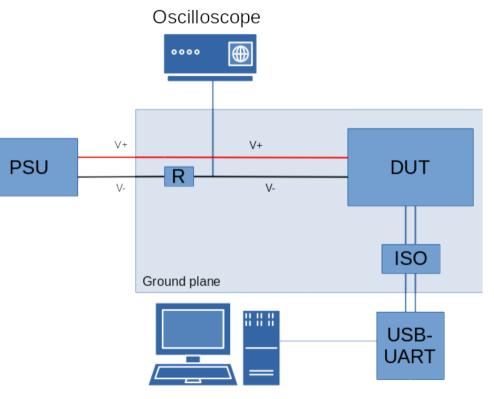
- Software SM4
 - GPIO as trigger
 - 16 bytes of input
 - 16 bytes of output

• If everything goes well, we should see the 32 rounds

We have a signal !

RIGOL STOP H 20.0us	4GSa/s 800kpts Measure	STOP/RUN D 80.0us	T 🚽 152mV N
addieddau 🗼 🛓 acaini addaen 🗸			mana na sina si na si
	Antonio (1997) - Antoni		
	2 == 5.00mV	100mV	
1		100mV 0.00V	I GII

So far so good


• Traces seem to be useable

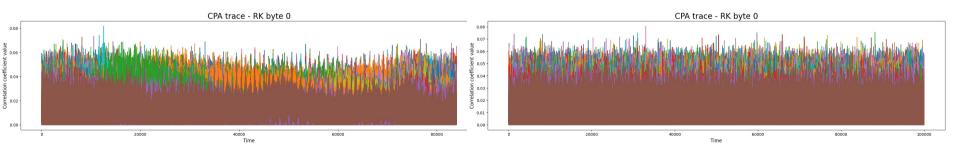
• Can we compare this technique with others ?

- Shunt resistor is a good candidate
 - Similar placement in the circuit
 - Affordable / easy setup

Shunt resistor setup

- SM4 on STM32
- 1 Ohm resistor placed on GND
 - FYI: LISN line resistance is 0.16 Ohm
- Everything else unchanged

Setup 1 - LISN



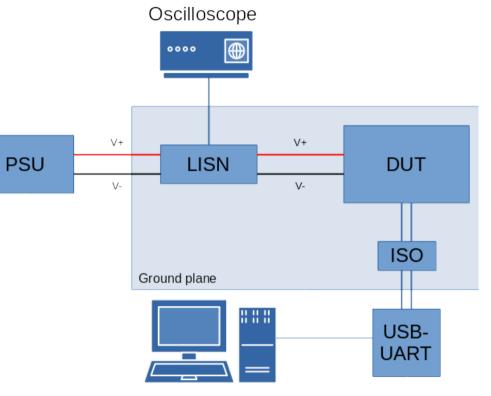
Setup 1 - Shunt

RIGO	WAIT H	20.0us	4GSa/s 800kpts	Measure	STOP/RUN	D 80.0u	s	T 📑	1 152mV N
- - -									
- - - -									
-									-
T - - 									
-									-
- - 									-
1	100mV 0.00V 2	2.00mV 0.00V	3 5.00	mV 0.00V	2.00mV 0.00V	L 0 1 2 3 4 5 6 8 9 1011 121314	<u> </u>	GII ↓	LXI (× 18:25

CPA

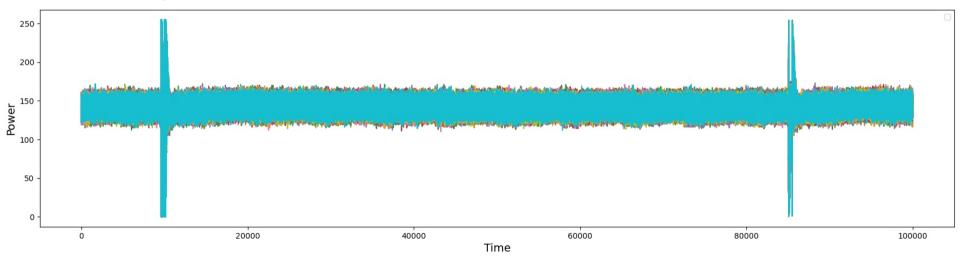
- 5000 traces acquired
 - Random plaintext
 - No resync
- Results on first round :
 - LISN : 3/4 bytes recovered. Last byte is the second candidate
 - Shunt : No correlation

Exploiting signals

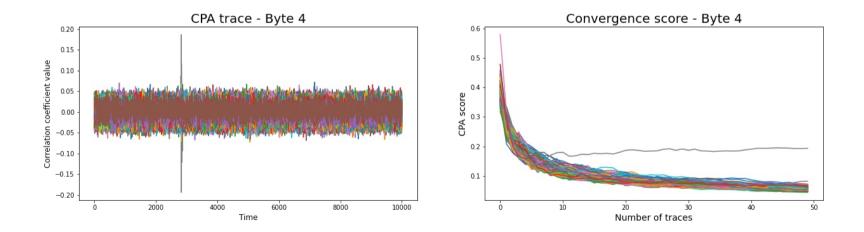

- LISN provides a better dynamic range compared to shunt
 - Allows key recovery with less traces
- Signal is also less noisy
 - Can also be due to my cheap power supply

• Quite old chip, CPU leaks a lot

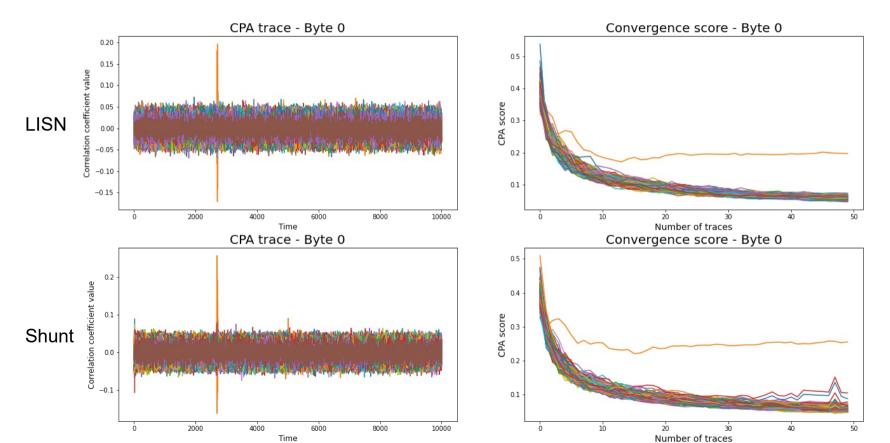
- Would it be the same with a more recent chip ?
- Does the technique work with decoupling capacitors ?


Second test setup

- ESP32-C3 devkit @160MHz
 - Capacitors NOT removed
- Simple firmware
 - software AES (tinyAES)
 - GPIO as trigger
- Acquisition
 - LISN on both power rails (+3.3V/GND)
 - 1 Ohm resistor on VDD
- Rigol MSO5000 oscilloscope
 - 350MHz / 4GSPS


Acquisition

- 50'000 averaged traces
- Random plaintext
- No resynchronization

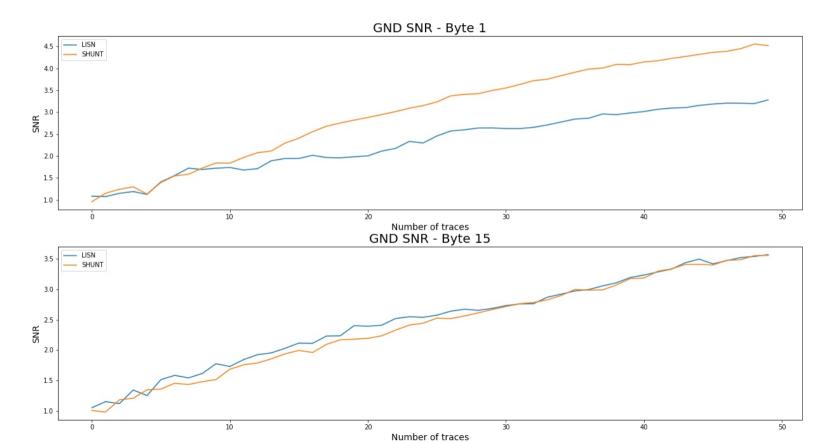


Initial results

- Applying CPA on both trace sets reveals the key
- Not enough information to quantify each trace set quality

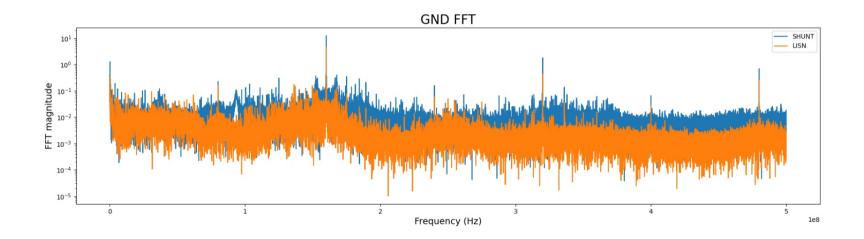
LISN vs Shunt

49


Comparing CPA techniques

- No "official" way to compare sets of traces
- Ended up with some kind of "Signal over noise ratio"
- <correct guess correlation value> / mean(<other correlation values>)

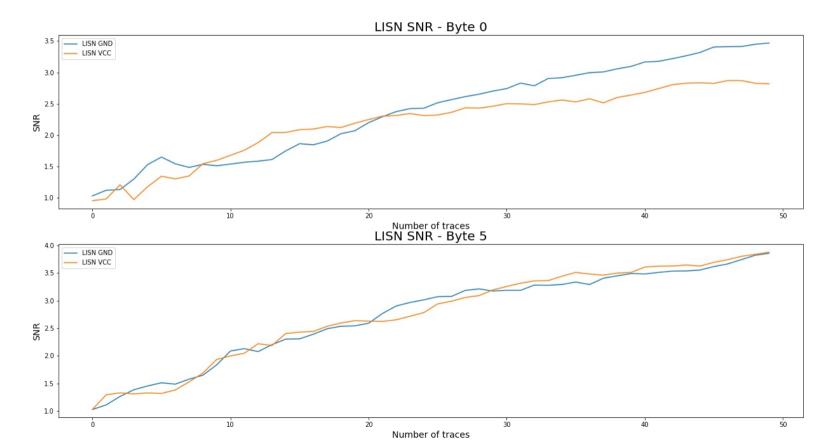
• Gives a rough estimate of measurement quality



"SNR" comparison

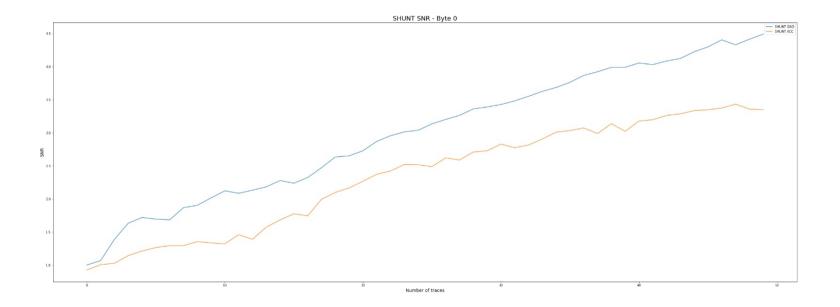
51

FFT comparison



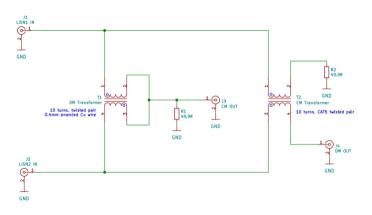
VCC vs GND

- LISN provides measurement ports on both VCC and GND
- Did same acquisition on each measurement port
 - 50'000 averaged traces, random plaintext


• Measuring on GND provides slightly better results

"SNR" LISN - VCC vs GND

54


VCC vs GND - Shunt

Common mode / Differential mode

• Monitoring both VCC and GND allows to perform differential analysis

• Custom built CM/DM separator

Differential (Normal) Mode Noise and Common Mode Noise explanation https://techweb.rohm.com/knowledge/emc/s-emc/01-s-emc/6899

CM / DM difference

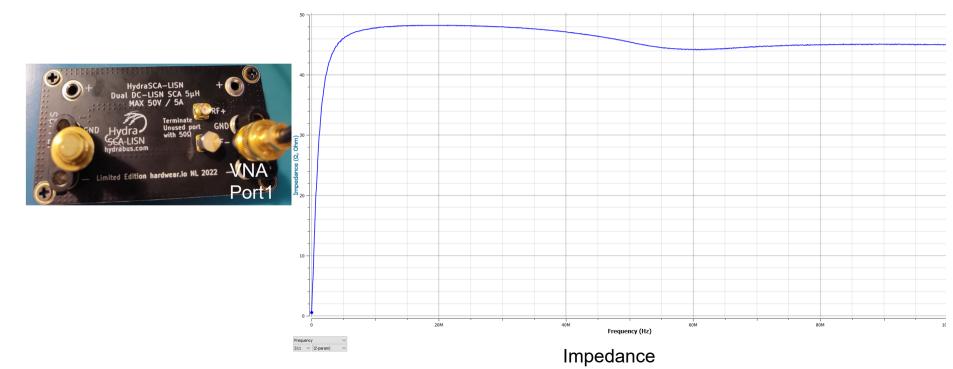
- Tested on both setups
 - DM signal traces do provide some correlation
 - CM does not
- Might need more tests, as the separator only dampens the other signal

RICOL STOP H 20.0us 4GSa/s Measure STOP/RUN D 80.0us T	🚽 1 204mV N	RIGOL STOP H 20.0us 4GSa/s Measure STOP/RUN D 80.0us T & 1 204mV N
	-	
	-	
	المستر بالمتعلق الجريم بعرضه	
	-	
	-	
	-	
		57
1	∲ LXI ∲ × 17:07	1 ^m 100mV 0.00V 2 ^m 100mV 0.00V 3 ^m 5.00mV 0.00V 4 ^m 100mV 0.00V L 0 1 23 45 67 8 8 1011 1213 445 8 8 1011 1213 445 8 9 1011 1213 445

Conclusions

- LISN provides a different way of acquiring side-channel information
- In practice, similar performance as a shunt resistor
 - Lower inline resistance. Could be useful for specific targets (non intrusive)
 - Signal is already AC-coupled
 - Measure is made on both lines
- EMC testing methodology allows to enhance signal quality by diminishing noise

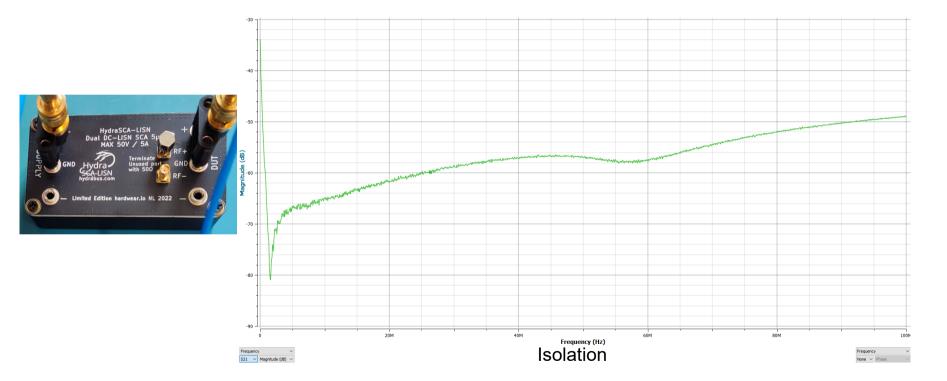
HydraSCA-LISN Limited Edition hardwear.io NL 2022


Exclusively for hardwear.io NL 2022

We have 8 units available, find us after the talk !

HydraSCA-LISN V1 R1

BONUS



BONUS

BONUS

