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Me ?

● Nicolas Oberli (aka Balda)
● Security engineer @ SCRT
● CTF enthusiast
● Retro gamer
● Beer drinker / brewer
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It all started so simply...

● I wanted to add 
coin handling to 
my MAMEcab

● Bought a coin 
acceptor on an 
auction site
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Coin handling devices

● All kinds of machines use coin handling 
devices
– ATMs
– Vending machines
– Casino slot machines
– …

● Multiple devices are used in these 
machines
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Coin / Bill acceptors

● Used to count coins 
and bills

● Can detect coin/bill 
value

● Detects false coins/bills
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Coin sorters

● Used to sort coins into 
different trays

● Connected after a coin 
acceptor
– The acceptor tells the 

sorter which channel 
(tray) to place the coin in
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Coin hopper

● Used to give coins back 
to the customer
– One hopper per coin value
– Gives coins back one by 

one
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Communication protocols

● Multiple protocols are used to 
communicate with these devices
– Parallel
– Serial (RS232)
– MDB
– ccTalk

● The protocols are very vendor-specific
● ccTalk is what we will be talking about
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ccTalk ?

● “coin-controls-Talk”
● Semi-proprietary protocol

– Maintained by Money Controls LLC, 
England

– Protocol specs available on cctalk.org
● Some parts of the specs are only available after 

signing a NDA :-(
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ccTalk ?

● Request / response messages
● RS232-like data transmission

– Uses only one wire for both sending and 
receiving

– 9600 bits/s, 8N1, TTL signals (0 - 5V)

● Each device has its own address on the 
bus
– By default 1=controller, 2=coin acceptor 
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ccTalk message format

● All frames use the same format

– Header is the actual command sent to the 
device

● Header equal to 0 means it's a response

● Payload length can vary from 0 to 252
– Data length != packet length

● Checksum is the complement to 0xFF of 
the packet

destination data length source header [data] checksum

1 byte
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ccTalk headers

● Each command is assigned a header
– Since its coded in a byte, 256 possible 

commands
● From the doc : 
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Sample communication

● 02 00 01 FE ff
– Sample poll from @01 to @02

● 01 00 02 00 FD
– Response from @02 to @01

● 02 00 01 F6 07
– Request manufacturer ID

● 01 03 02 00 4E 52 49 11
– Response (length 3) : NRI

● (ASCII encoded)
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Coin acceptor handling

● The controller can ask a coin acceptor 
its status using header 229
– The response contains the following 

payload

● Counter is incremented for each event 
generated by the acceptor
– Event counter cycles from 1 to 255

Result 1A Result 1Bcounter Result 2A Result 2B
Result 3A Result 3B Result 4A Result 4B Result 5A
Result 5B

1 byte
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Coin acceptor results 

● The last five results are sent in the 
response 
– Result A contains the validation channel

● A device can recognize a certain amount of 
different coins which are organized in channels

● Either set by the manufacturer or by config

– Result B contains the error code (Bad coin, 
mechanical error, ...)

● Again, the codes are vendor specific

– Sometimes, results A and B are switched
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Initial project

● Implement the ccTalk protocol to handle 
a coin acceptor

● Use a Teensy in keyboard mode
– When a coin is inserted, determine its value 

and send the corresponding number of 
keystrokes to MAME
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Teensy ?

● Hardware prototyping board
– Like an Arduino, look at your badge !

● Can use the Arduino IDE to write code
● Adds the possibility to emulate USB 

devices
– Mouse, serial port, keyboard, ...
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Demo !
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Can we do more ?

● Other vending machines may use other 
headers and / or functions

● It is difficult to track responses
– You need to decode the request first

● There is no open source sniffer for 
ccTalk...
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Introducing ccSniff/ccParse

● Python utilities used to sniff data on a 
ccTalk bus and parse the sniffed data to 
a readable format
– Uses a ccTalk library developed from 

scratch

● Can use a bus pirate to sniff
– It's the best way, since it can handle UART 

signals correctly



 

 x 21

Bus pirate ?

● Open source hardware hacking tool
● Easy interfacing with a lot of protocols

– UART, SPI, I2C, 1-Wire, JTAG, …

● Usage can be scripted
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Demo !



 

 x 23

Can we do even more ?

● What if we can inject some data on the 
bus ?
– Like telling the controller “Hey ! I'm the 

coin acceptor and I received a LOT of 
money !”

● The problem is, we only have one wire 
for the whole bus
– Both us and the device receive the request 

at the same time
– That means we would answer at the same 

time and jam the signal
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ccTalk multidrop commands

● Used by the controller to resolve 
addressing conflicts
– Header 251 – Address change
– Used by the controller to force a device to 

change its address in case of conflicts
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Device in the middle

● Simply tell the device at address x that 
it needs to change its address to y

● Using these requests, we are now able 
to hijack the device
– It allows us to intercept all communications 

between the controller and the device
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Timing

● We need to be sure that we won't jam 
the current traffic

● At 9600b/s, it takes 1.04ms to send a 
byte
– To send the address change request (6 

bytes) it takes us 6.24ms

● ccTalk specs indicate that devices such 
as coin acceptors and hoppers need to 
be polled every 200ms
– Largely enough time for us
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Device hijacking

● To hijack a device on the bus :
● Scan the bus to search for silence
● If sufficient periods of silence, prepare injection
● Craft an address change packet
● Wait for silence period, then inject packet
● Respond to requests from the controller
● When finished, set the device to its original 

address

● Remember, we need to do this while the 
bus is in use
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Introducing ccJack

● Automates the hijacking process
● Can emulate any device by sniffing the 

current responses and reply the same
● Can use a bus pirate to sniff and inject
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Example : Inject coins !

● Once the coin acceptor is hijacked, just 
respond by incrementing the counter
– It is also possible to modify the coin code to 

increase the value of the injected coin

● Be careful ! The counter must be higher 
or equal to the last value
– Any lower value will make the controller 

throw an error and likely reset itself
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Demo !
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More ?

● As the acceptor is “offline”, we can do 
whatever we want to it
– Some coin acceptors can be re-calibrated by 

ccTalk
● Look for headers 201 and 202
● What if CHF 0.10 becomes CHF 5.- ?

– The path the coin takes after being accepted 
can be modified

● Look for headers 209 and 210
● What if the new sorter path

is the money return ?
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Hopper handling

● Hoppers follow a special schema to 
release money (simplified)
– Controller asks for a challenge (Header 160)
– Hopper responds with 8 random bytes
– Controller encodes this challenge and sends 

the response with the number of coins to 
release (Header 167)

– Operation is checked periodically by the 
controller (Header 166) 
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Hopper bias

● To simplify these steps, some vendors 
provide hoppers with no 
challenge/response support
– Sometimes, you just need to send the 

hopper serial number as the response
– Sometimes...

If the hopper Product Code is "SCH2-NOENCRYPT", then the 
DISPENSE COINS command still needs an 8-byte code, but the 
value of the code does not matter.
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Grab the money !

● After a hopper is hijacked, just tell it to 
dispense 0xff coins
– Will only work if the hopper does not use 

the challenge/response method

● Better : Use the “Purge hopper” 
command (Header 121)
– Does not take any challenge/response
– Hardly ever implemented in practice, but 

you never know...
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Isn't there any protection ?

● Some devices only respond after having 
been provided a PIN code
– Only for a subset of commands

● Depends on the device / firmware / vendor

– Well, just wait for the PIN to be sent by the 
controller

● Check for header 218

– We can “help” it by pulling the power cord
– It could be possible that the PIN code is the 

same for a vending machine model
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Encryption

● In later versions of the specs, the ccTalk 
payload and headers can be encrypted
– Two encryption methods are available

● Proprietary encryption – 24 bit key
● DES encryption – 56 bit key

– Use a pre-shared key between the 
controller and the devices

● Encryption uses different headers
– Header 229 vs header 112
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Future – Research fields

● More things to discover on the protocol
– Encryption support seems suspicious

● Keys can be transferred using ccTalk
● Proprietary and closed-source encryption could 

be weak

– Some devices accept dumping their internal 
memory by ccTalk

● Maybe there are vulns in the firmwares ?

– It is possible to upload a new firmware to 
the devices using ccTalk

● Evilgrade ccTalk edition ?
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Future - Hoppers

● Coin hoppers challenge / response 
algorithm 
– Algorithm protected by NDA
– Still working on that one, there may be a 

new version of ccJack coming in a near 
future ;-)
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Connectivity

● Vending machines normally protect 
their contents
– It usually requires a second key to get the 

money

● Access to the bus “only” requires that  
the machine be open
– An evil employee could do it
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More realistic attack

● For the moment, we still need to 
connect a bus pirate on the ccTalk bus
– Therefore, we also need a laptop
– Not really stealth

● It would be possible to use an Arduino 
and a bluetooth shield to do the same
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Conclusions

● Specific protocols can be fun to analyze
– You never know where you can find exotic 

protocols

● ccTalk definitely needs more attention
– Since it transports money-related 

information, there are interesting 
applications

● If you don't have one, buy a bus pirate
– It's pure awesomeness !
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Availability

● All the tools will be available after 
Hashdays

● https://github.com/Baldanos
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Many thanks !

Any questions ?

Nicolas.oberli@gmail.com
@Baldanos

Did I mention I LOVE beer ?
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