
Please insert
inject more

coins

Hashdays 2012

Press start

 x 2

Me ?

● Nicolas Oberli (aka Balda)
● Security engineer @ SCRT
● CTF enthusiast
● Retro gamer
● Beer drinker / brewer

 x 3

It all started so simply...

● I wanted to add
coin handling to
my MAMEcab

● Bought a coin
acceptor on an
auction site

 x 4

Coin handling devices

● All kinds of machines use coin handling
devices
– ATMs
– Vending machines
– Casino slot machines
– …

● Multiple devices are used in these
machines

 x 5

Coin / Bill acceptors

● Used to count coins
and bills

● Can detect coin/bill
value

● Detects false coins/bills

 x 6

Coin sorters

● Used to sort coins into
different trays

● Connected after a coin
acceptor
– The acceptor tells the

sorter which channel
(tray) to place the coin in

 x 7

Coin hopper

● Used to give coins back
to the customer
– One hopper per coin value
– Gives coins back one by

one

 x 8

Communication protocols

● Multiple protocols are used to
communicate with these devices
– Parallel
– Serial (RS232)
– MDB
– ccTalk

● The protocols are very vendor-specific
● ccTalk is what we will be talking about

 x 9

ccTalk ?

● “coin-controls-Talk”
● Semi-proprietary protocol

– Maintained by Money Controls LLC,
England

– Protocol specs available on cctalk.org
● Some parts of the specs are only available after

signing a NDA :-(

 x 10

ccTalk ?

● Request / response messages
● RS232-like data transmission

– Uses only one wire for both sending and
receiving

– 9600 bits/s, 8N1, TTL signals (0 - 5V)

● Each device has its own address on the
bus
– By default 1=controller, 2=coin acceptor

 x 11

ccTalk message format

● All frames use the same format

– Header is the actual command sent to the
device

● Header equal to 0 means it's a response

● Payload length can vary from 0 to 252
– Data length != packet length

● Checksum is the complement to 0xFF of
the packet

destination data length source header [data] checksum

1 byte

 x 12

ccTalk headers

● Each command is assigned a header
– Since its coded in a byte, 256 possible

commands
● From the doc :

 x 13

Sample communication

● 02 00 01 FE ff
– Sample poll from @01 to @02

● 01 00 02 00 FD
– Response from @02 to @01

● 02 00 01 F6 07
– Request manufacturer ID

● 01 03 02 00 4E 52 49 11
– Response (length 3) : NRI

● (ASCII encoded)

 x 14

Coin acceptor handling

● The controller can ask a coin acceptor
its status using header 229
– The response contains the following

payload

● Counter is incremented for each event
generated by the acceptor
– Event counter cycles from 1 to 255

Result 1A Result 1Bcounter Result 2A Result 2B
Result 3A Result 3B Result 4A Result 4B Result 5A
Result 5B

1 byte

 x 15

Coin acceptor results

● The last five results are sent in the
response
– Result A contains the validation channel

● A device can recognize a certain amount of
different coins which are organized in channels

● Either set by the manufacturer or by config

– Result B contains the error code (Bad coin,
mechanical error, ...)

● Again, the codes are vendor specific

– Sometimes, results A and B are switched

 x 16

Initial project

● Implement the ccTalk protocol to handle
a coin acceptor

● Use a Teensy in keyboard mode
– When a coin is inserted, determine its value

and send the corresponding number of
keystrokes to MAME

 x 17

Teensy ?

● Hardware prototyping board
– Like an Arduino, look at your badge !

● Can use the Arduino IDE to write code
● Adds the possibility to emulate USB

devices
– Mouse, serial port, keyboard, ...

 x 18

Demo !

 x 19

Can we do more ?

● Other vending machines may use other
headers and / or functions

● It is difficult to track responses
– You need to decode the request first

● There is no open source sniffer for
ccTalk...

 x 20

Introducing ccSniff/ccParse

● Python utilities used to sniff data on a
ccTalk bus and parse the sniffed data to
a readable format
– Uses a ccTalk library developed from

scratch

● Can use a bus pirate to sniff
– It's the best way, since it can handle UART

signals correctly

 x 21

Bus pirate ?

● Open source hardware hacking tool
● Easy interfacing with a lot of protocols

– UART, SPI, I2C, 1-Wire, JTAG, …

● Usage can be scripted

 x 22

Demo !

 x 23

Can we do even more ?

● What if we can inject some data on the
bus ?
– Like telling the controller “Hey ! I'm the

coin acceptor and I received a LOT of
money !”

● The problem is, we only have one wire
for the whole bus
– Both us and the device receive the request

at the same time
– That means we would answer at the same

time and jam the signal

 x 24

ccTalk multidrop commands

● Used by the controller to resolve
addressing conflicts
– Header 251 – Address change
– Used by the controller to force a device to

change its address in case of conflicts

 x 25

Device in the middle

● Simply tell the device at address x that
it needs to change its address to y

● Using these requests, we are now able
to hijack the device
– It allows us to intercept all communications

between the controller and the device

 x 26

Timing

● We need to be sure that we won't jam
the current traffic

● At 9600b/s, it takes 1.04ms to send a
byte
– To send the address change request (6

bytes) it takes us 6.24ms

● ccTalk specs indicate that devices such
as coin acceptors and hoppers need to
be polled every 200ms
– Largely enough time for us

 x 27

Device hijacking

● To hijack a device on the bus :
● Scan the bus to search for silence
● If sufficient periods of silence, prepare injection
● Craft an address change packet
● Wait for silence period, then inject packet
● Respond to requests from the controller
● When finished, set the device to its original

address

● Remember, we need to do this while the
bus is in use

 x 28

Introducing ccJack

● Automates the hijacking process
● Can emulate any device by sniffing the

current responses and reply the same
● Can use a bus pirate to sniff and inject

 x 29

Example : Inject coins !

● Once the coin acceptor is hijacked, just
respond by incrementing the counter
– It is also possible to modify the coin code to

increase the value of the injected coin

● Be careful ! The counter must be higher
or equal to the last value
– Any lower value will make the controller

throw an error and likely reset itself

 x 30

Demo !

 x 31

More ?

● As the acceptor is “offline”, we can do
whatever we want to it
– Some coin acceptors can be re-calibrated by

ccTalk
● Look for headers 201 and 202
● What if CHF 0.10 becomes CHF 5.- ?

– The path the coin takes after being accepted
can be modified

● Look for headers 209 and 210
● What if the new sorter path

is the money return ?

 x 32

Hopper handling

● Hoppers follow a special schema to
release money (simplified)
– Controller asks for a challenge (Header 160)
– Hopper responds with 8 random bytes
– Controller encodes this challenge and sends

the response with the number of coins to
release (Header 167)

– Operation is checked periodically by the
controller (Header 166)

 x 33

Hopper bias

● To simplify these steps, some vendors
provide hoppers with no
challenge/response support
– Sometimes, you just need to send the

hopper serial number as the response
– Sometimes...

If the hopper Product Code is "SCH2-NOENCRYPT", then the
DISPENSE COINS command still needs an 8-byte code, but the
value of the code does not matter.

 x 34

Grab the money !

● After a hopper is hijacked, just tell it to
dispense 0xff coins
– Will only work if the hopper does not use

the challenge/response method

● Better : Use the “Purge hopper”
command (Header 121)
– Does not take any challenge/response
– Hardly ever implemented in practice, but

you never know...

 x 35

Isn't there any protection ?

● Some devices only respond after having
been provided a PIN code
– Only for a subset of commands

● Depends on the device / firmware / vendor

– Well, just wait for the PIN to be sent by the
controller

● Check for header 218

– We can “help” it by pulling the power cord
– It could be possible that the PIN code is the

same for a vending machine model

 x 36

Encryption

● In later versions of the specs, the ccTalk
payload and headers can be encrypted
– Two encryption methods are available

● Proprietary encryption – 24 bit key
● DES encryption – 56 bit key

– Use a pre-shared key between the
controller and the devices

● Encryption uses different headers
– Header 229 vs header 112

 x 37

Future – Research fields

● More things to discover on the protocol
– Encryption support seems suspicious

● Keys can be transferred using ccTalk
● Proprietary and closed-source encryption could

be weak

– Some devices accept dumping their internal
memory by ccTalk

● Maybe there are vulns in the firmwares ?

– It is possible to upload a new firmware to
the devices using ccTalk

● Evilgrade ccTalk edition ?

 x 38

Future - Hoppers

● Coin hoppers challenge / response
algorithm
– Algorithm protected by NDA
– Still working on that one, there may be a

new version of ccJack coming in a near
future ;-)

 x 39

Connectivity

● Vending machines normally protect
their contents
– It usually requires a second key to get the

money

● Access to the bus “only” requires that
the machine be open
– An evil employee could do it

 x 40

More realistic attack

● For the moment, we still need to
connect a bus pirate on the ccTalk bus
– Therefore, we also need a laptop
– Not really stealth

● It would be possible to use an Arduino
and a bluetooth shield to do the same

 x 41

Conclusions

● Specific protocols can be fun to analyze
– You never know where you can find exotic

protocols

● ccTalk definitely needs more attention
– Since it transports money-related

information, there are interesting
applications

● If you don't have one, buy a bus pirate
– It's pure awesomeness !

 x 42

Availability

● All the tools will be available after
Hashdays

● https://github.com/Baldanos

 x 43

Many thanks !

Any questions ?

Nicolas.oberli@gmail.com
@Baldanos

Did I mention I LOVE beer ?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43

