

Defeating TLS client authentication
using fault attacks

 2

Who are we ?
● R&D dept. @

Kudelski Security
● Embedded systems

security research
– Reverse engineering

● Security Evaluation
Lab @ Kudelski IoT

● Hardware attacks
– Glitch / EM
– Lasers !

 3

Introduction

● In more and more use cases we have an embedded device
which communicates with a cloud.

● The device (usually) authenticates itself to guarantee data
origin.

● Some of the devices are low cost and have no physical
security.

TLS (in a nutshell)

 5

TLS 1.2

● Transport Layer Security replaces Secure Sockets Layer
● De facto standard (the s of https and green lock in the browser)
● Current version is TLS 1.3 released in 2018.
● TLS 1.2 is still massively used.
● Used in IoT for mutual authentication with the cloud.

 6

Amazon Web Services IoT

 7

AWS IoT authentication
● TLS 1.2 authentication is used by AWS IoT to identify devices.
● AWS FreeRTOS uses mbedTLS from ARM to implement TLS.

● AWS IoT cloud supports the following cipher suites:
ECDHE-ECDSA-AES128-GCM-SHA256 (recommended)
ECDHE-RSA-AES128-GCM-SHA256 (recommended)
ECDHE-ECDSA-AES128-SHA256
...

 8

AWS IoT authentication
Client certificate and private key are in the firmware:

 9

TLS 1.2 handshake

 10

Certificate Verify signature

Elliptic Curve Digital Signature Algorithm
(in a nutshell too)

 12

ECDSA signature

● TLS allows using RSA or ECDSA as signature algorithms.
● ECDSA has the advantage to have smaller key lengths for the

same security level.
● Performance of ECDSA is better for signature.

Perfect signature algorithm for IoT.

 13

ECDSA

(x , y)=k⋅P
r=x
s=k−1

(h+rd)

From d, the device private key, the signature is computed over
the elliptic curve:

The output signature is (r, s).

The nonce k must be generated randomly and must be unique.

 14

ECDSA attack

From r it is not possible to recover the value of k (discrete
logarithm).
But if two different messages have been signed with the same
nonce then it is possible to recover k.

Then with k we can recover d the private key directly.

2010: PS3 signature key recovery

 15

Fault attacks on ECDSA

If we are able to set the nonce to a known value or to reduce
its entropy then the private key can be recovered with:

d=(ks−h)⋅r−1

h is known since it is the hash of previous handshake messages

MbedTLS implementation

 17

mbedTLS

Used in a lot of embedded SDKs

“mbedTLS offers an SSL library with an intuitive API and
readable source code, so you can actually understand
what the code does.” (tls.mbed.org)

We analyzed the code until we reached the nonce generation

 18

MbedTLS implementation
The nonce is generated in the mbedtls_ecp_gen_privkey in ecp.c:

 19

MbedTLS implementation

 20

MbedTLS random nonce generation

Fill a buffer with random values:
Depending on SDK/target, will use the hardware RNG

Convert the buffer to a mbedtls_mpi value:
Converts buffer from big- to little-endian...

By copying the buffer bytes to dword

 21

Attack Idea

● Generate a lookup table containing small nonces multiplied by
the generator i.e. with records (k, k P)⋅ .

● Insert a fault to exit the buffer copy loop earlier.
● The resulting nonce value may be truncated (32 bits).
● If the resulting signature is in our table then we can recover the

nonce and then private key !

 22

Code protection ?

● Return value is uninitialized at the beginning of the function
● Compiler initializes the value to 0...
● Function returns 0 if successful

Exploitation

 24

ESP32

● System-on-Chip manufactured by Espressif
● Widely deployed on the field
● Supported by AWS IoT
● Integrated Wi-Fi
● Vulnerable to voltage glitch

 25

Previous fault attacks on ESP32

● LimitedResults:
– Voltage glitch
– Effects used to

● Bypass AES encryption
● Bypass secure boot
● Extract flash encryption and secure boot keys

 26

ESP32 power domains

 27

Voltage glitch on ESP32

 28

ESP32 preparation

 29

ESP32 preparation

 30

Chipwhisperer setup
● Voltage glitch was generated by Chipwhisperer using

crowbar method.

 31

Chipwhisperer setup

 32

ESP32 start-up

 33

Glitch shape

 34

Lookup table
● We generated a lookup table for k from 1 to 232, around

300GB.

● It took two days to generate the table but then one
lookup takes 5s.

● The table is similar to the one used during an attack
against Bitcoin signature.
(https://github.com/nomeata/secp265k1-lookup-table.)

 35

Key recovery

● The network was probed and each signature was recorded
with the corresponding hash of the previous handshake
messages

● If the signature is in our database:

 36

Quick win

● During the tests, we found a glitch point that fixes the nonce
to 0xFFFFFFFF

● Eases the cracking process

Disclosure

 38

MbedTLS implementation

● The call to read_binary was removed from version after
2.16.1 of mbedTLS for performance reasons. But it was still
included in ESP32 software until February 2020.

● (Un)fortunately, there are other ways to attack the signature
with the same results (CTR_DRBG or HMAC_DRBG).

 39

MbedTLS implementation

 40

Disclosure
● We contacted ARM with full details of our attack.

● We suggested to change the default return value to
something else in our responsible disclosure

● About one month later :

● No more communication from ARM since then

“[...]We generally consider hardware fault attacks out of scope of
the Mbed TLS threat model. However, we are happy to work with

you on this issue and follow coordinated disclosure with the fix.

 41

No response ?

 42

Timeline

● 09/09/2019 : Vulnerability reported to ARM.
● 09/27/2019 : ARM acknowledge the vulnerability.
● 11/22/2019 : ARM hardened the library with error status.
● 02/12/2020 : Espressif upgraded to mbedTLS v2.16.5.
● Now : Vulnerability still exists.

 43

Possible countermeasures

● Use TLS 1.3
– Handshakes are encrypted

● Use RSA for authentication ?
● Use a hardware secure element

Conclusions

 45

Takeaways

● Full key recovery is possible using a single fault.
● This attack is not related to the target platform.
● Software hardening must be implemented carefully.

 46

Questions ?

 47

Backup slides

 48

Previous attacks on ECDSA

● 2014: “Ooh Aah... Just a Little Bit”
● 2019: Biased Nonce Sense: Lattice Attacks against Weak

ECDSA Signatures in Cryptocurrencies
● 2019: TPM.fail
● 2019: Minerva

 49

Previous fault attack on TLS

● Attacking Deterministic Signature Schemes using Fault
Attacks (Poddebniak et al.):
● Rowhammer on deterministic ECDSA and EdDSA.
● Server attack.
● Needs one faulted and one correct signature for the same

message.
● Degenerate Fault Attacks on Elliptic Curve Parameters in

OpenSSL (Takahashi et al.):
● Fault attack on point decompression.
● Application on OpenSSL running on Raspberry Pie.

 50

Degenerate Fault Attacks

 51

ESP32 preparation

