
  

Defeating TLS client authentication 
using fault attacks
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Who are we ?
● R&D dept. @ 

Kudelski Security
● Embedded systems 

security research
– Reverse engineering

● Security Evaluation 
Lab @ Kudelski IoT

● Hardware attacks
– Glitch / EM
– Lasers !
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Introduction

● In more and more use cases we have an embedded device 
which communicates with a cloud.

● The device (usually) authenticates itself to guarantee data 
origin.

● Some of the devices are low cost and have no physical 
security. 



  

TLS (in a nutshell)
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TLS 1.2

● Transport Layer Security replaces Secure Sockets Layer
● De facto standard ( the s  of https and green lock in the browser) 
● Current version is TLS 1.3 released in 2018. 
● TLS 1.2 is still massively used.
● Used in IoT for mutual authentication with the cloud.
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Amazon Web Services IoT
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AWS IoT authentication
● TLS 1.2 authentication is used by AWS IoT to identify devices.
● AWS FreeRTOS uses mbedTLS from ARM to implement TLS.

● AWS IoT cloud supports the following cipher suites:
ECDHE-ECDSA-AES128-GCM-SHA256 (recommended)
ECDHE-RSA-AES128-GCM-SHA256 (recommended)
ECDHE-ECDSA-AES128-SHA256
...
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AWS IoT authentication
Client certificate and private key are in the firmware:
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TLS 1.2 handshake
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Certificate Verify signature



  

Elliptic Curve Digital Signature Algorithm
(in a nutshell too)
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ECDSA signature

● TLS allows using RSA or ECDSA as signature algorithms.
● ECDSA has the advantage to have smaller key lengths for the 

same security level.
● Performance of ECDSA is better for signature.

Perfect signature algorithm for IoT.
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ECDSA

(x , y)=k⋅P
r=x
s=k−1

(h+rd )

From d, the device private key, the signature is computed over 
the elliptic curve:

The output signature is (r, s). 

The nonce k must be generated randomly and must be unique.
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ECDSA attack

From r it is not possible to recover the value of k (discrete 
logarithm). 
But if two different messages have been signed with the same 
nonce then it is possible to recover k.

Then with k we can recover d the private key directly.

2010: PS3 signature key recovery
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Fault attacks on ECDSA

If we are able to set the nonce to a known value or to reduce 
its entropy then the private key can be recovered with:

d=(ks−h)⋅r−1

h is known since it is the hash of previous handshake messages



  

MbedTLS implementation
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mbedTLS

Used in a lot of embedded SDKs

“mbedTLS offers an SSL library with an intuitive API and 
readable source code, so you can actually understand 
what the code does.” (tls.mbed.org)

We analyzed the code until we reached the nonce generation
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MbedTLS implementation
The nonce is generated in the mbedtls_ecp_gen_privkey  in ecp.c:
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MbedTLS implementation
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MbedTLS random nonce generation

Fill a buffer with random values:
Depending on SDK/target, will use the hardware RNG

Convert the buffer to a mbedtls_mpi value:
Converts buffer from big- to little-endian...

By copying the buffer bytes to dword



  21

Attack Idea

● Generate a lookup table containing small nonces multiplied by 
the generator i.e. with records (k, k  P)⋅ .

● Insert a fault to exit the buffer copy loop earlier.
● The resulting nonce value may be truncated (32 bits).
● If the resulting signature is in our table then we can recover the 

nonce and then private key !
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Code protection ?

● Return value is uninitialized at the beginning of the function
● Compiler initializes the value to 0...
● Function returns 0 if successful



  

Exploitation
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ESP32

● System-on-Chip manufactured by Espressif
● Widely deployed on the field
● Supported by AWS IoT
● Integrated Wi-Fi
● Vulnerable to voltage glitch
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Previous fault attacks on ESP32

● LimitedResults:
– Voltage glitch
– Effects used to

● Bypass AES encryption
● Bypass secure boot
● Extract flash encryption and secure boot keys
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ESP32 power domains
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Voltage glitch on ESP32
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ESP32 preparation
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ESP32 preparation
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Chipwhisperer setup
● Voltage glitch was generated by Chipwhisperer using 

crowbar method.
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Chipwhisperer setup
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ESP32 start-up
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Glitch shape
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Lookup table
● We generated a lookup table for k from 1 to 232, around 

300GB.

● It took two days to generate the table but then one 
lookup takes 5s.

● The table is similar to the one used during an attack 
against Bitcoin signature. 
(https://github.com/nomeata/secp265k1-lookup-table.)
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Key recovery

● The network was probed and each signature was recorded 
with the corresponding hash of the previous handshake 
messages

● If the signature is in our database:
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Quick win

● During the tests, we found a glitch point that fixes the nonce 
to 0xFFFFFFFF

● Eases the cracking process



  

Disclosure
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MbedTLS implementation

● The call to read_binary was removed from version after 
2.16.1 of mbedTLS for performance reasons. But it was still 
included in ESP32 software until February 2020.

● (Un)fortunately, there are other ways to attack the signature 
with the same results (CTR_DRBG or HMAC_DRBG).
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MbedTLS implementation
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Disclosure
● We contacted ARM with full details of our attack.

● We suggested to change the default return value to 
something else in our responsible disclosure

● About one month later :

● No more communication from ARM since then

“[...]We generally consider hardware fault attacks out of scope of 
the Mbed TLS threat model. However, we are happy to work with 

you on this issue and follow coordinated disclosure with the fix.
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No response ?
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Timeline

● 09/09/2019 : Vulnerability reported to ARM.
● 09/27/2019 : ARM acknowledge the vulnerability.
● 11/22/2019 : ARM hardened the library with error status.
● 02/12/2020 : Espressif upgraded to mbedTLS v2.16.5.
● Now : Vulnerability still exists.
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Possible countermeasures

● Use TLS 1.3
– Handshakes are encrypted

● Use RSA for authentication ?
● Use a hardware secure element



  

Conclusions
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Takeaways

● Full key recovery is possible using a single fault.
● This attack is not related to the target platform.
● Software hardening must be implemented carefully.
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Questions ?
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Backup slides
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Previous attacks on ECDSA 

● 2014: “Ooh Aah... Just a Little Bit”
● 2019: Biased Nonce Sense: Lattice Attacks against Weak 

ECDSA Signatures in Cryptocurrencies
● 2019: TPM.fail
● 2019: Minerva
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Previous fault attack on TLS

● Attacking Deterministic Signature Schemes using Fault 
Attacks (Poddebniak et al.):
● Rowhammer on deterministic ECDSA and EdDSA.
● Server attack.
● Needs one faulted and one correct signature for the same 

message.
● Degenerate Fault Attacks on Elliptic Curve Parameters in 

OpenSSL (Takahashi et al.):
● Fault attack on point decompression.
● Application on OpenSSL running on Raspberry Pie.
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Degenerate Fault Attacks
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ESP32 preparation


