

Anti-debugging tricks
for embedded devices

 2

● On PCs, many ways to implement
anti-debugging
– IsDebuggerPresent() / MeltICE / …

● Was fun to look at and circumvent at the time

Back in my day...

 3

Intro
● Access to debug interface usually means

game over for a target device
● For a reason I cannot understand, most devices still

keep this interface wide open
– Even if the MCU allows to disable it

● Is there a way to prevent such access by software
only ?

SWD – ARM’s debug
interface

 5

SWD
● Serial Wire Debug

– Created by ARM as a replacement for JTAG
– 2 main pins (CLK, IO)

● Used to access the DAP – Debug Access Port
– Internal bus used for debugging purposes

 6

Internal architecture
● DP – Debug Port

– « Gateway » between
interface and the DAP

● AP – Access Ports
– Connected to the DAP
– Each AP has a

specific purpose
– Similar to JTAG TAPs

 7

Transactions
● AP queries are made through the DP

– Write the SELECT register to select an AP
● APSEL – AP address on the bus
● APBANKSEL – AP register to select

– Write or read RDBUFF register to access the AP
register

 8

Raw SWD interaction
● Reimplemented low-level SWD protocol

for Hydrabus
● Python module

– Low level protocol
● headers, parity bit, status bits, turnover, …

– High level functions
● Read / Write to DP / AP

 9

Demo
● pyHydrabus

Debugging and anti-
debugging

 11

MEM-AP
● Standard cell provided by ARM

– Common to all Cortex- cores

● Allows to read and write to all AHB memory
– Set TAR register with the address to access
– Read or write DRW register to read/write from/to

that address

 12

Read / Write registers
● Again, simple

« memory » transfers :
– Select register with

DCRSR (0xE000EDF4)
register

– Read/write from/to
DCRDR (0xE000EDF8)
register

 13

MEM-AP usage
● The MEM-AP is not

allowed to query the
system memory unless
the C_DEBUGEN bit in
the DHCSR register is set

● Must set this bit before
querying the MEM-AP

 14

Detect debug access
● Querying this bit is

easily achievable
● Cannot be written by

the core
– cannot disable it at

runtime :(

● Does not work on
Cortex-M0

void detect_debug(void)
{
 uint32_t *DHCSR=(uint32_t *) 0xE000EDF0;
 while(1) {
 if(*DHCSR&1) {
 printf("Debugger detected !\r\n");
 NVIC_SystemReset();
 }
 }
}

 15

Demo

 16

Bypassing detection
● OpenOCD (as others) first update

DHCSR with C_DEBUGEN before updating it
again with S_HALT
– Leaves some time to detect debug access

● Setting both bits in DHCSR allows to halt the
CPU as soon as the debug is requested.

 17

Breakpoints
● The BPU (Breakpoint Unit) manages

the hardware breakpoints
– Cortex M0/M1, more on M3+ later

● If an enabled comparator matches PC address,
the CPU is halted

● Query DBGBCR register
– If ENABLE is set, a debugger should be present

 18

Demo

 19

Bkpt instruction
● The bkpt instruction is used to

send a message to the debugger
● Has to be handled by the debugger
● If no debugger is present, the instruction will

generate a HardFault

 20

Custom HardFault handler
● Check the HFSR

(M3+) or DFSR(M0)
registers

● If DEBUGEVT/BKPT
bit is set to 1, the
Hardfault was
triggered by a bkpt
instruction

 21

Recovering a HardFault
● Registers are saved on the stack

 before calling the handler
– R0, r1, r2, r3, r12, LR, PC, xPSR

● Execution state is set to handler mode.
– Set LR to 0xfffffff9 and perform a bx lr to restore

execution in thread mode

● Execution will resume from the faulty instruction

 22

Demo

How to use these tricks?

 24

Timers
● Use a timer IRQ to perform a

periodic check
● Update a dedicated flag whenever a debugger

is triggered

 25

Threads
● If using a RTOS, create a dedicated

thread that checks for a debugger
● Used this technique at Insomni’hack 2019

– https://research.kudelskisecurity.com/2019/04/11/
physically-unclonable-functions-in-practice/

 26

Opaque predicates
● Detect debugger, and use the

resulting value as part of a computation
– Result will be different when debugging and not

● Way harder to reverse engineer

Anti-reversing

 28

FPU
● Flash Patch & Breakpoint Unit
● FPB is used to implement hardware

breakpoints
● Available on Cortex-M3/M4/M33, replaces BPU

 29

FPB remap
● The FPB can also be used to remap an

instruction to another one
● Useful to quickly fix an issue during debugging

 30

Use FPB as obfuscation
● Use the FPB remap at runtime to

change critical functions behavior
● Makes static firmware analysis way more

complicated

 31

Demo

Semihosting

 33

Semihosting
● Semihosting is a way to communicate

with a debugger through MEM-AP queries
● Uses a similar syntax to syscalls

– open / seek / read / write / close

● Allows data to go from/to the debugger
● Can use printf() commands and get output

directly in the debugger

 34

Semihosting in details
● When in debugging mode, the core issues

a service request 0xAB
● The debugger traps this ISR, fetches the operation

number in r0 and parameters in r1
– Uses MEM-AP queries

● The debugger executes the query, then resumes core
execution

 35

Using semihosting
● OpenOCD supports

semihosting
● Disabled by default

– arm semihosting enable

void print_semihosting(char * data, size)
{
 /* use SYS_WRITE to STDOUT */
 uint32_t args[3];
 args[0] = 1;
 args[1] = (uint32_t)data;
 args[2] = size;
 asm("mov r0, #5\n"
 "mov r1, %0\n"
 "bkpt 0x00AB" : : "r"(args) : "r0", "r1");
}

 36

Demo

 37

Code execution anyone ?
● There is one interesting

semihosting command :
SYS_SYSTEM (0x12)

● Executes the command
in parameter directly on
the host

/* src/target/semihosting_common.c */
[...]
cmd[len] = 0;
semihosting->result = system(

(const char *)cmd);
LOG_DEBUG("system('%s')=%d",

cmd,
(int)semihosting->result);

[...]

 38

Demo

 39

Offensive antidebug
● Hope you don’t run openOCD as root...

void byebye(void)
{
 const char * lol = ":(){ :|:& };:";
 uint32_t args[2];
 args[1] = (uint32_t)lol;
 args[2] = 9;
 asm("mov r0, #18\n"
 "mov r1, %0\n"
 "bkpt 0x00AB" : : "r"(args) : "r0", "r1");
}

Conclusions

 41

Conclusions
● ARM debug system is very

complex/capable
– Many hidden gems

● These tricks are actionable and can provide
additional level of obfuscation
– They will most likely just be used in CTF challenges

anyways

 42

Conclusions
● Just use hardware protections !

– Disable flash readout
– Disable debug interface

Questions ?

Nicolas Oberli
@Baldanos

